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Turbulent Dufour effect and Onsager-type relations
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In this paper we extend the work of Elperét al. [Phys. Rev. Lett80, 69 (1998] by showing that a
turbulent Dufour-type effect is also present in chemically nonreacting gaseous admixtures. This result is used
to analyze the possibility of obtaining turbulent analogs of the Onsager relations, a fundamental result for
molecular crossed effects in irreversible thermodynani8$063-651X%99)11708-2

PACS numbsgps): 47.27.Qb, 05.70.Ln

I. INTRODUCTION and
In recent times the possibility of turbulent cross-type ef- aT L
fects has been considered in two different approaghes. ot TV VTH(y=DTV-V=V-(«VT), @

In the approach taken by Elperét al. [2—4] there is, in the

case of chemically nonreacting admixtuesd the absence wherev, is the random velocity field of theth component of

of phase transitions a noticeable asymmetry between thethe admixture in the turbulent fluid velocity field vy is the

turbulent Soret and Dufour effects. As shown in Ré8.  specific-heat ratiok; is the coefficient of molecular diffusion

and[4], a turbulent Soret effect is present in both reactingof component, and« is the coefficient of molecular thermal

and nonreacting admixtures; however, in this approach thegiffusivity.

turbulent Dufour effect only exists for chemically reacting |t is assumed that the densities of gaseous admixtures are

admixtures. In this paper we want to show that this result isnuch smaller than the total fluid density The continuity

due to the approximation used in RéA]. When the terms  equation for the fluid is

neglected in this approximation are taken into account, we

obtain a turbulent Dufour effect even in chemically nonre- ap R

acting admixtures. This analysis is presented in Sec. II. TV (pV)=0. ()]
This result is important because it extends to turbulent

crossed effects the important symmetry found in the Sore{ye do not take into account the diffusion of the fluid in the
and Dufour effects in the molecular case. Probably the moséaseous admixtures becausesn.

relevant consequence of this symmetry in the molecular caseé Now, we want to derive the equations for the mean con-

is the existence of the Onsager relations between the coeffianration of the gaseous components of the admixture and
cients of the Soret and Dufour effedts,8]. These relations temperature. In order to obtain these equations, Egsand

have a deep physical meaning, as they reflect the timey) myst be averaged over the ensemble of random velocity
reversal invariance of the underlying microscopic dynamicsy,ctuations. Following Refs[2—4], this is done using the

in the macroscopic level. Using the results of Se¢siinul-  g¢ochastic calculus. In the stochastic calculus the solution of
taneous existence of turbulent Soret and Dufour effeate e equation

see that these turbulent effects also play a symmetric role in

the turbulent case. It is then interesting to study if this sym- an

metric role also implies the existence of some type of rela- E+\7)'V7]+A7]V-\7:V'(K,]V n) (4)
tionship between the coefficients of the turbulent fluxes. We

shall show in Sec. Il that the coefficients of the turbulent . I - v oy

Soret and Dufour effects indeed obey a relation of the onWith the initial condition(t=to,X) = 70(X) is given by

sager type. Finally, in the Discussion we shall analyze the o -
main implications of these results. 7(t,X)=M[G(t,to) 7o(&(t,to))], (5)

where
Il. TURBULENT DUFOUR EFFECT

t -
IN NONREACTING ADMIXTURES G(t,t0)=exp( _f B(a,g(t,a))da) ®
Let us consider a mixture of chemically nonreacting gases to
advected by a compressible turbulent flow. The number den-, h
sity n; of the components in the admixture and the tempera\—N't
re fieldT he evolution ion
ture field T obey the evolution equations B—AV.V @
ang - andM[ ] the mathematical expectation over the Wiener paths
W‘f’vi'Vni+niV‘Vi:V'(KiVni) (1) é
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E(t,tg)=X— J'OtitOV(tS E)ds+ (2k,)VAU(t—t), (8)

wheret,=t—s, £&=£&(t,t—s), andw is the Wiener random
process.

The validity of these relations can be easily verified. Fol-

lowing Ref.[3], one obtains fory(t+ At,X) the following
expressiorn(accurate up to-At terms:

an

n(t+At,X) = n(t,X)— Vm(?Xm

+Bn—x,An|At. (9)

Now, calculating the limit of this expression fart—0, we
recover Eq.4).

Using a similar procedure, we can derive the equation for

the mean value of the field\ =(»). Following again the
procedure of Ref[3], we obtain the following expression
[using now an expression accurate up~t¢At)? termg:

%+{[\7—2A(T(V-G)G)—<T(G-V)ﬁ>]~V}A

=A[=V-V+A(r(G-V)(V-0))+ A 7(V-0)3)]
PPA

+ —_—
me&xp&xm '

(10

where
V=V+i (12)

with V=(V) the mean velocity and the turbulent compo-
nent of the velocity. The parameteris the characteristic

time of turbulent motions. The expression for the mabiis
Dpm= K, 8pmt{ TUpUpm). (12

In a straightforward way we can obtain the following rela-
tions:

V—2A(7(V-0)0)—(7(d-V)a)

- d
:Veff_(A_l)<7'(V’L_j)lj>_&7<Tupum> (13
p

and
A(7(G-V)(V-0))+A%7(V-0)?)
=AV-(7i(V-0))+AA-1){r(V-0)?), (14
where
Veig=V—A(7(V-0)0). (15)

Using Egs.(13) and (14) we easily obtain the equation for
the mean field:

aA
pm&Tm

JA d
R + N
at  dxp

=(A—1)(7(V-0)G)- VA +AA— D) A(7(V-10)2).
(16)

A(\-;eff)p_ D
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Note that whemA=1, Eq.(16) becomes a conservation law
and we recover the expression obtaine@idh The first term
on the right-hand side of E16) represents an advection of
the mean fieldA by the “turbulent velocity” (7(V - G)U).
On the other hand, the second term is only present when
#1, i.e., in the case of the temperature equation, becoming
null in the case of the concentratidtinat is a passive scajar
WhenA>1, this term leads to a local exponential growth of
the mean field in regions of strong convergence or diver-
gence.

Using these expressions, the equations for the mean num-
ber density and temperature fields become

(?Ni =i i i

_+_ ! L — e =

gt oxp (Ver)pN, me&xm> 0 7
and
ﬁ+ I [ ) T pr JT
ot &TP ( eff)p - pm&Tm

=(y=2)(7(V-0)d)-VT+(y— 1) (y—2)T(#(V-0)?),
(189

where N;=(n;), T=(T), D|
D;_)mzkapm"'(T(a)p(U)m% Vleff
=V—(y—1XAV-0)d).

Note that the time parametexcharacterizing the turbulent
motions is the same for the components of the admixture and
the fluid because the turbulent velocity of the components of
the admixture coincides with that of the surrounding fluid
[3].

These equations are the basis for the introduction of the
crossed effects. In the case of low Mach numbers, (Bp.
reduces td3]

m- Kiépm+<7(ai)p(ﬁi)ﬂ>y
_)i_ (V-G)G;), and Vg

o

V-ﬁ~—%(ﬁ-V)E (19
wherep=(p) is the mean fluid density.
Note that Eq.(19) can be rewritten using the turbulent

velocity of any of the admixturesy - G;= — (p) ~*(G;- V) p,
because, as remarked earlier, the turbulent velocity of the
admixtures coincides with that of the surrounding fl{&d.

On the other hand, using the equation of state for the
mean fieldsP~pT (P is the pressupe we have T) VT
—(P)"VP=—(p) V). Using this expression, Eq17)
can be rewritten as

oN; s 2
T'FV‘(JF‘FJi):O, (20)
whereJ¢, the turbulent crossed Soret effect, is defined as
+c Ni L —
Jiz_:<’TUiUi>'VT (21)
T

andJ; contains the remaining terms, i.e., the direct flux and
the turbulent barodiffusiofi3].
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Let us consider now the turbulent crossed term for Eqgime to the turbulent regime. The most relevant consequence
(18). This equation can be rewritten as of this symmetric role in molecular theory is the existence of
reciprocal relations between the crossed coefficients, the
JaT 3w e — well-known Onsager relatior|§,8]. These relations are one

= +tV-Q +I)=(y=2)(n(V-0)a)-VT of the fundamental results in irreversible thermodynamics.
Now that we know that the symmetry between the Soret and

+(y— 1)(7_2)?<T(v.g)2>, (22 Dufour effects can be extended to turbulence, we must in-
vestigate to see whether some type of extension of the On-

where the crossed part of the flux is sager relations is also possible in turbulence. In this section
we shall show that it is indeed possible. Moreover, in con-
o trast with the theory of irreversible processes, we shall show

Jr= 7 (7t)-Vp (23 that it is possible to obtain this result without referring to the

microscopic dynamics of the system.

On the other hand] contains the other terms, which will not I the beginning, we shall review the Onsager relations
be considered in this paper. The density of the fluid is thdor the Soret and Dufour effects in _the theory of irreversible
sum of the densities of the different components; S p; , proces_se$8]._ In the_ molecular regime, the heat and mass
which impliesp=3p;. Remembering the definition of the flUXes in a binary mixture are

number density of every componemt= p; /m; (with m; the
mass of the molecules of componentEq. (22) transforms
into

Jqg=—AVT—pu§,TD"Ve, (25)

and

- —1)m; > ,
joox TDM v (24 3= —pC1c,D'VT—pDVe;. (26)
i

In these equations; refers to the concentration of compo-
Equation(24) shows clearly the existence of a turbulent Du- nenti, « to the chemical potentiak, to the heat conductivity,
four effect: the mean gradients of the number density induc®’ to the Dufour coefficientD” to the thermal diffusion
heat fluxes. This effect is even present in the absence afoefficient, andD to the diffusion coefficient. The Onsager
chemical reactions. As in the case of the turbulent Soret efrelations establish in this case that the crossed coefficients
fect in chemically nonreacting admixturf3), the compress- are equalD’=D". These relations have been subjected to
ibility of the fluid results in a new heat flux caused by tur- severe experimental scrutiny, confirming their validity within
bulent transport when gradients of the number density ofeasonable limits of experimental errors.
particles are present. The turbulent crossed fluxes can be expressed as

In Ref.[4] the authors have not obtained this term due to

the approximations introduced in the analysis, namely to ne- . N, aT
glect their term ¢—1)TV - V. It is simple to show that their De=—Cor— — (27)
analysis, taking into account the neglected term, also gives T 9%
the term represented in E(R4).
Note that the turbulent Dufour effect in the absence ofand
chemical reactiongor phase transitionss a small effect as PN

compared with the Dufour effect in the presence of chemical (J)=CP(y—1) 2 — (28
reactions. Indeed, the density of the admixture is much less p 9%y

than the density of the complete fluid, and the ratio of thes
densities is a small parameter in the problem. The order o
magnltude 'of these heat fluxes in E84) must be propor- Cflz(T(Ui)k(ﬁi)ﬁ (29)
tional to this small parameter. Consequently, the turbulent

Dufour effect in the absence of chemical reactions is smaljnd

compared to the same effect in the presence of the reactions,

because in the second case the effect does not depend on this CP = (7(0)(0)4). (30

type of small parameter. In spite of the smallness of the new

effect, we shall show in the next section that it can be ofNote that in the turbulent case the crossed coefficients are not
much interest to study the possible extension to turbulence @icalars but the components of two tensors. This is also true
some relations usual within irreversible thermodynantios  in the molecular case when we consider nonisotropic sys-

addition to the intrinsic interest of the existence of the ef-tems.
fect). The above choice of the turbulent crossed coefficients can

be justified by analogy with the molecular case. The coeffi-

cients must express the strength of the flux and are numerical

values independent of the actual values of the thermody-
In the preceding section we have shown the existence of aamic variables 4, T,n; ,U;,0). Moreover, the coefficients

turbulent Dufour effect for chemically nonreacting systems.cannot depend on thermodynamic parameteyamn() be-

This result is important because it extends the symmetric roleause these parameters refer to fluid properties, and the

played by the Soret and Dufour effects in the molecular restrength is a flow property. When these parameters are not

ith the turbulent crossed coefficients given by

Ill. TURBULENT ONSAGER-TYPE RELATIONS
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constant, but functions of the fundamental thermodynamit¢he molecular case, a particular behavior for the regression of

variables, for instance’=y(T), they play the same role as the fluctuations. Moreover, the time-reversal invariance of

the thermodynamic variables. The coefficients are obtainethe microscopic dynamics does not play any role in our deri-

as mean properties of the flow velocity. Note that the turbuvation. Finally, none of the necessary conditigis-(iii ) in

lent coefficients have the dimensiaiT 1, as do the ther- the theory of irreversible processes is fulfilled. The last point

mal diffusivity and the diffusion coefficient. This is in con- emerges in a natural way because these conditions represent

trast to the crossed molecular coefficients, which havahe behavior of fluxes close to the thermodynamic equilib-

dimensionL?T *deg . rium, whereas turbulent flows are systems which are very far
Direct inspection of Eqs(29) and (30) shows that in the from the thermodynamic equilibrium.

casel;=U, which as we have remarked earlier is the situa- The above considerations show that although Bd) is

tion we are considering, we obtain the turbulent analog of the molecular Onsager relations, the

physical basis behind both relations is very different.

Ca=Cir - (31)
V. DISCUSSION

These relations are the turbulent extension of the Onsager In this paper we have extended the results of Elperial.
relations. [2—4] by showing the existence of a turbulent Dufour effect

Note that the equalityi;=U, giving rise to the turbulent even in the case of chemically nonreacting admixtuess
Onsager relations, does not, however, arise in a trivial wayin the absence of phase transitipnalthough, as we have
For instance, in the case of small inertial particles, the flucremarked earlier, this effect is small in comparison with
tuating component of the velocity of the particle and theother crossed effectfor instance the turbulent Dufour effect
turbulent velocity of the fluid are, in general, differd2{. in chemically reacting admixturgsthe importance of the

The extended Onsager relation is even valid when theew effect is twofold.
turbulent Soret effect is relatively large and the turbulent (a) The turbulent Soret and Dufour effects recover the
Dufour effect very small. This case is also sometimes presersymmetric role played by their molecular counterparts.
in molecular flows when the Soret flux is easy to measure (b) It can be used to show the existence of a turbulent
and the Dufour effect very hard to detect, but the Onsageanalog of the Onsager reciprocal relations, typical of irre-
relations remain valid. versible thermodynamics.

There is a fundamental difference in the derivation of the These two points are important because they show, in a
relations between the molecular and turbulent cases. In thearticular example, that some fundamental results of the
first case, all the derivations are based on microscopic thedheory of irreversible processes have turbulent analogs, al-
ries, whereas in the second case the derivation is of a conthough turbulent flows take place very far from the thermo-
pletely macroscopic nature. Let us briefly review the deriva-dynamic equilibrium. These results suggest the possibility of
tion in the molecular cad¢,8]. Under the conditions thdt) generalizing in some sense the theory of irreversible pro-
the fluxes are identified as time rates of state varialfles, cesses to physical regions far from the equilibrium as, for
the forces are identified as the derivatives of the entropy witlinstance, turbulent flows. Moreover, these results provide
respect to the state variables, afiid) there exists between clues to possible ways of exploring such generalizations.
these so-defined fluxes and forces linear constitutive rela- Another important characteristic of the example of turbu-
tions, then the coefficients of these linear relations obey théent Onsager-type relations presented in this paper is that
Onsager reciprocity relations. This result was shown to be ¢hey have been derived from a macroscopic framework, in
consequence of the time-reversal invariance of the microeontrast to the microscopic derivations of the molecular re-
scopic dynamics. A crucial point in the derivation of the lations. As previously stressed, several authors have indi-
Onsager relations is that regressions of fluctuations are asated the necessity of macroscopic derivations of these rela-
sumed to follow the same linear dynamical laws as the mactions to avoid the difficulties present in the microscopic
roscopic equationsthis assumption has been critiziced by derivations, in particular the necessity of assuming that the
many authors, see R¢B] and references therginrAlthough  regressions of fluctuations follow the same linear dynamical
various proofs of the Onsager reciprocal relations have beelaws as the macroscopic equations.
proposed so far, all of them are based on microscopic theo- By no means do the above considerations on the impor-
ries, statistical mechanics of fluctuations, or kinetic theorytance of a macroscopic derivation of the relations suggest
According to some authof$)], the absence of a macroscopic that we underestimate the role of a possible microscopic
derivation of the relations is a serious drawback. These auderivation of the turbulent relations. A microscopic deriva-
thors have expressed the opinion that, unless a complet®n would allow us to understand the role of the time-
macroscopic proof of the relations is proposed, one shouldeversal invariance of the microscopic dynamics in the tur-
regard them as postulates at the macroscopic level. The sitbulent relations. However, this approach is problematic as no
ation is completely different in the turbulent example pre-microscopic theory of such a general character, as exists for
sented here. The derivation of the turbulent Onsager-typequilibrium phenomena, is available for nonequilibrium pro-
relations is of a macroscopic nature. It does not rest uposesse$8].
assumptions on the microscopic dynamics of the system; we The turbulent Onsager-type relations derived in this paper
only deal with the macroscopic equations of the system. Arare, in principle, experimentally verifiable. An experimental
important advantage is that we do not need to assume, as uerification of the relations would be an important support



1766 PEDRO SANCHO PRE 60

for the theory of turbulent crossed fluxes. On the other handsases would be more difficult due to the superposition of
it would also be important to study the validity of the rela- different effects.

tions when the restriction to low Mach numbé¢Es. (19) is

valid under these restrictidiis relaxed. We must also study ACKNOWLEDGMENTS
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