
PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Turbulent Dufour effect and Onsager-type relations

Pedro Sancho
Instituto Nacional de Meteorologı´a, Centro Zonal de Castilla y Leo´n, Orión 1, 41071 Valladolid, Spain

~Received 20 January 1999!

In this paper we extend the work of Elperinet al. @Phys. Rev. Lett.80, 69 ~1998!# by showing that a
turbulent Dufour-type effect is also present in chemically nonreacting gaseous admixtures. This result is used
to analyze the possibility of obtaining turbulent analogs of the Onsager relations, a fundamental result for
molecular crossed effects in irreversible thermodynamics.@S1063-651X~99!11708-2#

PACS number~s!: 47.27.Qb, 05.70.Ln
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I. INTRODUCTION

In recent times the possibility of turbulent cross-type
fects has been considered in two different approaches@1–6#.
In the approach taken by Elperinet al. @2–4# there is, in the
case of chemically nonreacting admixtures~and the absence
of phase transitions!, a noticeable asymmetry between t
turbulent Soret and Dufour effects. As shown in Refs.@3#
and @4#, a turbulent Soret effect is present in both react
and nonreacting admixtures; however, in this approach
turbulent Dufour effect only exists for chemically reactin
admixtures. In this paper we want to show that this resul
due to the approximation used in Ref.@4#. When the terms
neglected in this approximation are taken into account,
obtain a turbulent Dufour effect even in chemically non
acting admixtures. This analysis is presented in Sec. II.

This result is important because it extends to turbul
crossed effects the important symmetry found in the So
and Dufour effects in the molecular case. Probably the m
relevant consequence of this symmetry in the molecular c
is the existence of the Onsager relations between the co
cients of the Soret and Dufour effects@7,8#. These relations
have a deep physical meaning, as they reflect the ti
reversal invariance of the underlying microscopic dynam
in the macroscopic level. Using the results of Sec. II~simul-
taneous existence of turbulent Soret and Dufour effects!, we
see that these turbulent effects also play a symmetric rol
the turbulent case. It is then interesting to study if this sy
metric role also implies the existence of some type of re
tionship between the coefficients of the turbulent fluxes.
shall show in Sec. III that the coefficients of the turbule
Soret and Dufour effects indeed obey a relation of the O
sager type. Finally, in the Discussion we shall analyze
main implications of these results.

II. TURBULENT DUFOUR EFFECT
IN NONREACTING ADMIXTURES

Let us consider a mixture of chemically nonreacting ga
advected by a compressible turbulent flow. The number d
sity ni of the components in the admixture and the tempe
ture fieldT obey the evolution equations

]ni

]t
1vW i•“ni1ni“•vW i5“•~k i“ni ! ~1!
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]T

]t
1vW •“T1~g21!T“•vW 5“•~k“T!, ~2!

wherevW 1 is the random velocity field of thei th component of
the admixture in the turbulent fluid velocity fieldvW , g is the
specific-heat ratio,k i is the coefficient of molecular diffusion
of componenti, andk is the coefficient of molecular therma
diffusivity.

It is assumed that the densities of gaseous admixtures
much smaller than the total fluid densityr. The continuity
equation for the fluid is

]r

]t
1“•~rvW !50. ~3!

We do not take into account the diffusion of the fluid in th
gaseous admixtures becauseni!n.

Now, we want to derive the equations for the mean co
centration of the gaseous components of the admixture
temperature. In order to obtain these equations, Eqs.~1! and
~2! must be averaged over the ensemble of random velo
fluctuations. Following Refs.@2–4#, this is done using the
stochastic calculus. In the stochastic calculus the solutio
the equation

]h

]t
1vW •“h1Ah“•vW 5“•~kh“h! ~4!

with the initial conditionh(t5t0 ,xW )5h0(xW ) is given by

h~ t,xW !5M @G~ t,t0!h0„jW~ t,t0!…#, ~5!

where

G~ t,t0!5expS 2E
t0

t

B„s,jW~ t,s!…ds D ~6!

with

B5A“•vW ~7!

andM @ # the mathematical expectation over the Wiener pa
jW ,
1762 © 1999 The American Physical Society
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jW~ t,t0!5xW2E
0

t2t0
vW ~ ts ,jW s!ds1~2kh!1/2wW ~ t2t0!, ~8!

wherets5t2s, jW s5jW (t,t2s), andwW is the Wiener random
process.

The validity of these relations can be easily verified. F
lowing Ref. @3#, one obtains forh(t1Dt,xW ) the following
expression~accurate up to;Dt terms!:

h~ t1Dt,xW !5h~ t,xW !2S Vm

]h

]xm
1Bh2khDh DDt. ~9!

Now, calculating the limit of this expression forDt˜0, we
recover Eq.~4!.

Using a similar procedure, we can derive the equation
the mean value of the field,L5^h&. Following again the
procedure of Ref.@3#, we obtain the following expressio
@using now an expression accurate up to;(Dt)2 terms#:

]L

]t
1$@VW 22A^t~“•uW !uW &2^t~uW •“ !uW &#•¹%L

5L@2“•VW 1A^t~uW •“ !~“•uW !&1A2^t~“•uW !2&#

1Dpm

]2L

]xp]xm
, ~10!

where

vW 5VW 1uW ~11!

with VW 5^vW & the mean velocity anduW the turbulent compo-
nent of the velocity. The parametert is the characteristic
time of turbulent motions. The expression for the matrixD is

Dpm5khdpm1^tupum&. ~12!

In a straightforward way we can obtain the following rel
tions:

VW 22A^t~“•uW !uW &2^t~uW •“ !uW &

5VW eff2~A21!^t~“•uW !uW &2
]

]xp
^tupum& ~13!

and

A^t~uW •“ !~“•uW !&1A2^t~“•uW !2&

5A“•^tuW ~“•uW !&1A~A21!^t~“•uW !2&, ~14!

where

VW eff5VW 2A^t~“•uW !uW &. ~15!

Using Eqs.~13! and ~14! we easily obtain the equation fo
the mean field:

]L

]t
1

]

]xp
S L~VW eff!p2Dpm

]L

]xm
D

5~A21!^t~“•uW !uW &•“L1A~A21!L^t~“•uW !2&.

~16!
-

r

Note that whenA51, Eq. ~16! becomes a conservation la
and we recover the expression obtained in@3#. The first term
on the right-hand side of Eq.~16! represents an advection o
the mean fieldL by the ‘‘turbulent velocity’’ ^t(“•uW )uW &.
On the other hand, the second term is only present wheA
Þ1, i.e., in the case of the temperature equation, becom
null in the case of the concentration~that is a passive scalar!.
WhenA.1, this term leads to a local exponential growth
the mean field in regions of strong convergence or div
gence.

Using these expressions, the equations for the mean n
ber density and temperature fields become

]Ni

]t
1

]

]xp
S ~VW eff

i !pNi2Dpm
i ]Ni

]xm
D50 ~17!

and

]T̄

]t
1

]

]xp
S ~VW eff!pT̄2Dpm*

]T̄

]xm
D

5~g22!^t~“•uW !uW &•“T̄1~g21!~g22!T̄^t~“•uW !2&,

~18!

where Ni5^ni&, T̄5^T&, Dpm
i 5k idpm1^t(uW i)p(uW i)m&,

Dpm* 5kdpm1^t(uW )p(uW )m&, VW eff
i 5VW i2^t(“•uW i)uW i&, and V̄eff

5VW2(g21)̂ t(“•uW)uW&.
Note that the time parametert characterizing the turbulen

motions is the same for the components of the admixture
the fluid because the turbulent velocity of the components
the admixture coincides with that of the surrounding flu
@3#.

These equations are the basis for the introduction of
crossed effects. In the case of low Mach numbers, Eq.~3!
reduces to@3#

“•uW '2
1

r̄
~uW •“ !r̄, ~19!

wherer̄5^r& is the mean fluid density.
Note that Eq.~19! can be rewritten using the turbulen

velocity of any of the admixtures,“•uW i52( r̄)21(uW i•“) r̄,
because, as remarked earlier, the turbulent velocity of
admixtures coincides with that of the surrounding fluid@3#.

On the other hand, using the equation of state for
mean fieldsP̄;rT ~P is the pressure!, we have (T̄)21

“T̄

2( P̄)21
“ P̄52( r̄)21

“ r̄. Using this expression, Eq.~17!
can be rewritten as

]Ni

]t
1“•~JW i

c1JW i !50, ~20!

whereJW i
c , the turbulent crossed Soret effect, is defined a

JW i
c52

Ni

T̄
^tuW iuW i&•“T̄ ~21!

andJW i contains the remaining terms, i.e., the direct flux a
the turbulent barodiffusion@3#.



q

t
th

e

u-
uc
e
e

r-
o

t
n

ive

o

ica
le
es
r

len
a

io
n
e
o

e

ef

o
s

ro
re

nce
of
the

e
cs.
and
in-

On-
tion
n-
ow

he

ns
le
ss

-

r
ents
to

in

not
true
ys-

can
ffi-
rical
dy-

the
not

1764 PRE 60PEDRO SANCHO
Let us consider now the turbulent crossed term for E
~18!. This equation can be rewritten as

]T̄

]t
1“•~JW c1JW !5~g22!^t~“•uW !uW &•“T̄

1~g21!~g22!T̄^t~“•uW !2&, ~22!

where the crossed part of the flux is

JW c5
g21

r̄
^tuW uW &•“ r̄. ~23!

On the other hand,JW contains the other terms, which will no
be considered in this paper. The density of the fluid is
sum of the densities of the different components,r5( ir i ,
which implies r̄5( i r̄ i . Remembering the definition of th
number density of every componentni5r i /mi ~with mi the
mass of the molecules of componenti!, Eq. ~22! transforms
into

JW c5(
i

~g21!mi

r̄
^tuW uW &•¹Ni . ~24!

Equation~24! shows clearly the existence of a turbulent D
four effect: the mean gradients of the number density ind
heat fluxes. This effect is even present in the absenc
chemical reactions. As in the case of the turbulent Soret
fect in chemically nonreacting admixtures@3#, the compress-
ibility of the fluid results in a new heat flux caused by tu
bulent transport when gradients of the number density
particles are present.

In Ref. @4# the authors have not obtained this term due
the approximations introduced in the analysis, namely to
glect their term (g21)Tf“•vW . It is simple to show that their
analysis, taking into account the neglected term, also g
the term represented in Eq.~24!.

Note that the turbulent Dufour effect in the absence
chemical reactions~or phase transitions! is a small effect as
compared with the Dufour effect in the presence of chem
reactions. Indeed, the density of the admixture is much
than the density of the complete fluid, and the ratio of th
densities is a small parameter in the problem. The orde
magnitude of these heat fluxes in Eq.~24! must be propor-
tional to this small parameter. Consequently, the turbu
Dufour effect in the absence of chemical reactions is sm
compared to the same effect in the presence of the react
because in the second case the effect does not depend o
type of small parameter. In spite of the smallness of the n
effect, we shall show in the next section that it can be
much interest to study the possible extension to turbulenc
some relations usual within irreversible thermodynamics~in
addition to the intrinsic interest of the existence of the
fect!.

III. TURBULENT ONSAGER-TYPE RELATIONS

In the preceding section we have shown the existence
turbulent Dufour effect for chemically nonreacting system
This result is important because it extends the symmetric
played by the Soret and Dufour effects in the molecular
.
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gime to the turbulent regime. The most relevant conseque
of this symmetric role in molecular theory is the existence
reciprocal relations between the crossed coefficients,
well-known Onsager relations@7,8#. These relations are on
of the fundamental results in irreversible thermodynami
Now that we know that the symmetry between the Soret
Dufour effects can be extended to turbulence, we must
vestigate to see whether some type of extension of the
sager relations is also possible in turbulence. In this sec
we shall show that it is indeed possible. Moreover, in co
trast with the theory of irreversible processes, we shall sh
that it is possible to obtain this result without referring to t
microscopic dynamics of the system.

In the beginning, we shall review the Onsager relatio
for the Soret and Dufour effects in the theory of irreversib
processes@8#. In the molecular regime, the heat and ma
fluxes in a binary mixture are

JWq52l“T2r1m11
c TD9“c1 ~25!

and

JWm152rc1c2D8“T2rD“c1 . ~26!

In these equationsci refers to the concentration of compo
nenti, m to the chemical potential,l to the heat conductivity,
D8 to the Dufour coefficient,D9 to the thermal diffusion
coefficient, andD to the diffusion coefficient. The Onsage
relations establish in this case that the crossed coeffici
are equal,D85D9. These relations have been subjected
severe experimental scrutiny, confirming their validity with
reasonable limits of experimental errors.

The turbulent crossed fluxes can be expressed as

~JW i
c!k52Ck1

S Ni

T̄

]T̄

]x1

~27!

and

~JW c!k5Ck1
D ~g21!

mi

r̄

]Ni

]x1
~28!

with the turbulent crossed coefficients given by

Ck1
S 5^t~uW i !k~uW i !1& ~29!

and

Ck1
D 5^t~uW !k~uW !1&. ~30!

Note that in the turbulent case the crossed coefficients are
scalars but the components of two tensors. This is also
in the molecular case when we consider nonisotropic s
tems.

The above choice of the turbulent crossed coefficients
be justified by analogy with the molecular case. The coe
cients must express the strength of the flux and are nume
values independent of the actual values of the thermo
namic variables (r,T,ni ,uW i ,uW ). Moreover, the coefficients
cannot depend on thermodynamic parameters (g,mi) be-
cause these parameters refer to fluid properties, and
strength is a flow property. When these parameters are
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constant, but functions of the fundamental thermodyna
variables, for instanceg5g(T), they play the same role a
the thermodynamic variables. The coefficients are obtai
as mean properties of the flow velocity. Note that the tur
lent coefficients have the dimensionL2T21, as do the ther-
mal diffusivity and the diffusion coefficient. This is in con
trast to the crossed molecular coefficients, which ha
dimensionL2T21 deg21.

Direct inspection of Eqs.~29! and ~30! shows that in the
caseuW i5uW , which as we have remarked earlier is the situ
tion we are considering, we obtain

Ck1
S 5Ck1

D . ~31!

These relations are the turbulent extension of the Ons
relations.

Note that the equalityuW i5uW , giving rise to the turbulent
Onsager relations, does not, however, arise in a trivial w
For instance, in the case of small inertial particles, the fl
tuating component of the velocity of the particle and t
turbulent velocity of the fluid are, in general, different@2#.

The extended Onsager relation is even valid when
turbulent Soret effect is relatively large and the turbule
Dufour effect very small. This case is also sometimes pres
in molecular flows when the Soret flux is easy to meas
and the Dufour effect very hard to detect, but the Onsa
relations remain valid.

There is a fundamental difference in the derivation of
relations between the molecular and turbulent cases. In
first case, all the derivations are based on microscopic th
ries, whereas in the second case the derivation is of a c
pletely macroscopic nature. Let us briefly review the deri
tion in the molecular case@7,8#. Under the conditions that~i!
the fluxes are identified as time rates of state variables,~ii !
the forces are identified as the derivatives of the entropy w
respect to the state variables, and~iii ! there exists between
these so-defined fluxes and forces linear constitutive r
tions, then the coefficients of these linear relations obey
Onsager reciprocity relations. This result was shown to b
consequence of the time-reversal invariance of the mic
scopic dynamics. A crucial point in the derivation of th
Onsager relations is that regressions of fluctuations are
sumed to follow the same linear dynamical laws as the m
roscopic equations~this assumption has been critiziced b
many authors, see Ref.@9# and references therein!. Although
various proofs of the Onsager reciprocal relations have b
proposed so far, all of them are based on microscopic th
ries, statistical mechanics of fluctuations, or kinetic theo
According to some authors@9#, the absence of a macroscop
derivation of the relations is a serious drawback. These
thors have expressed the opinion that, unless a comp
macroscopic proof of the relations is proposed, one sho
regard them as postulates at the macroscopic level. The
ation is completely different in the turbulent example p
sented here. The derivation of the turbulent Onsager-t
relations is of a macroscopic nature. It does not rest u
assumptions on the microscopic dynamics of the system
only deal with the macroscopic equations of the system.
important advantage is that we do not need to assume,
ic
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the molecular case, a particular behavior for the regressio
the fluctuations. Moreover, the time-reversal invariance
the microscopic dynamics does not play any role in our d
vation. Finally, none of the necessary conditions~i!–~iii ! in
the theory of irreversible processes is fulfilled. The last po
emerges in a natural way because these conditions repre
the behavior of fluxes close to the thermodynamic equi
rium, whereas turbulent flows are systems which are very
from the thermodynamic equilibrium.

The above considerations show that although Eq.~31! is
the turbulent analog of the molecular Onsager relations,
physical basis behind both relations is very different.

IV. DISCUSSION

In this paper we have extended the results of Elperinet al.
@2–4# by showing the existence of a turbulent Dufour effe
even in the case of chemically nonreacting admixtures~and
in the absence of phase transitions!. Although, as we have
remarked earlier, this effect is small in comparison w
other crossed effects~for instance the turbulent Dufour effec
in chemically reacting admixtures!, the importance of the
new effect is twofold.

~a! The turbulent Soret and Dufour effects recover t
symmetric role played by their molecular counterparts.

~b! It can be used to show the existence of a turbul
analog of the Onsager reciprocal relations, typical of ir
versible thermodynamics.

These two points are important because they show,
particular example, that some fundamental results of
theory of irreversible processes have turbulent analogs
though turbulent flows take place very far from the therm
dynamic equilibrium. These results suggest the possibility
generalizing in some sense the theory of irreversible p
cesses to physical regions far from the equilibrium as,
instance, turbulent flows. Moreover, these results prov
clues to possible ways of exploring such generalizations

Another important characteristic of the example of turb
lent Onsager-type relations presented in this paper is
they have been derived from a macroscopic framework
contrast to the microscopic derivations of the molecular
lations. As previously stressed, several authors have i
cated the necessity of macroscopic derivations of these r
tions to avoid the difficulties present in the microscop
derivations, in particular the necessity of assuming that
regressions of fluctuations follow the same linear dynam
laws as the macroscopic equations.

By no means do the above considerations on the imp
tance of a macroscopic derivation of the relations sugg
that we underestimate the role of a possible microsco
derivation of the turbulent relations. A microscopic deriv
tion would allow us to understand the role of the tim
reversal invariance of the microscopic dynamics in the t
bulent relations. However, this approach is problematic as
microscopic theory of such a general character, as exists
equilibrium phenomena, is available for nonequilibrium pr
cesses@8#.

The turbulent Onsager-type relations derived in this pa
are, in principle, experimentally verifiable. An experimen
verification of the relations would be an important supp
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for the theory of turbulent crossed fluxes. On the other ha
it would also be important to study the validity of the rel
tions when the restriction to low Mach numbers@Eq. ~19! is
valid under these restriction# is relaxed. We must also stud
the validity of these types of relations in the case of ot
turbulent crossed fluxes, for instance the Soret and Du
effects in chemically reacting admixtures. However, the
perimental verification of the relations in these more gene
tt

tt
d,

r
ur
-
al

cases would be more difficult due to the superposition
different effects.
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